
1

Duplicate Records Elimination in Bibliographical Dataset using Priority

Queue Algorithm with Smith-Waterman Algorithm

Su Mon Thaung, Thin Thin Htike

University of Computer Studies, Pathein

sumonthaung99@gmail.com

Abstract

Often, in the real world, entities have two or

more representations in databases. Duplicate

records do not share a common key and / or they

contain errors that make duplicate matching a

difficult task. A major problem that arises from

integrating different databases is the existence of

duplicates. Data cleaning is the process for

identifying two or more records within the database,

which represent the same real world object

(duplicates), so that a unique representation for each

object is adopted. This system addresses the data

cleaning problem of detecting duplicate records that

are approximate duplicates, but not exact duplicates.

It uses Priority Queue algorithm with Smith

Waterman algorithm for computing minimum edit-

distance similarity values to recognize pairs of

approximately duplicates and then eliminate the

detected duplicate records. And, we also determine

the performance evaluation with the lowest FP %(

false positive percentage) and FN %(false negative

percentage) as the best result.

1. Introduction

Databases play an important role in today‟s IT

based economy. Many industries and systems depend

on the accuracy of databases to carry out operations.

To improve the data quality [7], data cleaning is

especially required when integrating heterogeneous

data sources. One of the most intriguing data quality

problems is that of multiple, yet different

representations of the same real world object in the

data.

The process of detecting and removing database

defects and duplicates is referred to as data cleaning.

Duplicate elimination is hard because it is caused by

different types of errors like typographical errors,

missing values, abbreviations and different

representations of the same logical value. In order to

provide access to accurate and consistent data,

consolidation of different data representations and

elimination of duplicate information become

necessary.

2. Related Works

The duplicate detection problem is different

from, but related to, the schema matching problem

[2, 6]. The problem of actually detecting matching

records still exists even when the schema matching

problem has been solved.

Record matching may also be used as a

substitute for detailed schema matching, which may

be impossible for semi-structured data. In general,

we are interested in situations where several records

may refer to the same real-world entity, while is not

being syntactically equivalent. A set of records that

refer to the same entity can be interpreted in two

ways. One way is to view one of the records as

correct and the other records as duplicates containing

erroneous information. The task then is to cleanse the

database of the duplicate records [4, 5]. Another

interpretation is to consider each matching record as

a partial source of information.

3. Overview of the System

In this system, we use the bibliographical XML

dataset from the DBLP repository which contains

860 records. DBLP (Digital Bibliography & Library

Project) is an internet “newcomer” that started

service in 1993. Figure 1 shows the example of

bibliographical XML dataset.

Figure 1. Example of Bibliographical XML

Dataset

mailto:sumonthaung99@gmail.com

2

The DBLP service evolved from a small

bibliography specialized to database systems and

logic programming to a digital library covering most

subfields of computer science. This service is

available from several hosts (University of Trier), CS

departments (Trier, Germany), ACM SIGMOD

(New York, USA), VLDB Endowment, Sunsite

Central Europe (Aachen, Germany).
The major contribution of the system examines

the extent for redundancy in bibliographical XML

data from DBLP database using priority queue

algorithm with smith-waterman algorithm. The

overview of the system is shown in Figure 2.

Figure 2. Overview of the System

It uses bibliographical XML dataset in large

scale DBLP database as input. We are commonly

divided into three stages in our proposed system.

In preprocessing stage, we parsing the

bibliographical record set in XML format from

DBLP repository into each fields. We use priority

queue algorithm and smith-waterman algorithm in

duplicate detection stage. In duplicate elimination

stage, only one record is retained and eliminated

other duplicates.

3.1. Preprocessing

Data cleaning is an important preprocessing step

before duplicate detection. We perform parsing and

standardizing stage for preprocessing.

3.1.1. Data Parsing

Parsing locates, identifies and isolates individual

data elements in the source files. It uses XML

bibliographic dataset as input and parsing them to

detect syntax errors. Parsing XML dataset is shown

in Figure 3.

Figure 3. Parsed Bibliographical XML Dataset

3.1.2. Data Standardizing

Data standardization refers to the process of

standardizing the information represented in certain

fields to a specific content format. It makes the

author-name fields in parsed bibliographical dataset

to a specific content format. Table 1 shows example

of standardize dirty data field in preprocessing.

Table 1. Example of Standardized Dirty Data

Field

Author Names
Standardized Author

Names
Robert S. Arnold R. S. Arnold

H. Raymond Strong H. R. Strong

Frank Manola F. Manola

Pieter Unema P. Unema

Edward A. Macnair E. A. Macnair

3.2. Duplicate Detection

In duplicate detection stage, these preprocessed

bibliographical records become the input to this

stage. Firstly, key creation process must be

performed to sort the dataset and to help duplicate

detection easily. After that, these sorted records are

the inputs to priority queue algorithm for merging.

We intend to use priority queue algorithm for faster

identification. These record pairs are then computed

their similarity values using smith-waterman

algorithm. The similarity values are compared with

certain threshold value. If the comparison succeeds,

we can get duplicate record pairs.

3.2.1. Key Creation

During key creation process, a key is computed

for each record in the database by extracting relevant

fields or portions of fields which form an important

discriminating attribute [9]. Table 2 shows example

of performing key creation process.

3

Table 2. Example of Key Creation Process

First author Second author
Year Key

First Last First Last

H Petrie S Morley 1973
PTRHM

RLS73

J Gray V Watson 1975
GRYJW

TSV75

M Fried J Rosen 1978
FRDMR

SNJ78

3.2.2. Sorting

The records in the database are sorted using the

keys computed in key creation process.

3.2.3. Merging

After the parsed Bibliographical records have

been sorted, we use priority queue through the

sequential list of records limiting the comparisons for

record matching. We intend to use priority queue

algorithm to improve the efficiency of duplicate

records detection.

3.2.3.1. Overall Priority Queue Algorithm

The algorithm scans the sorted database with a

priority queue of record subsets belonging to the last

few clusters detected. The priority queue contains a

fixed number of sets of record. In this experiment,

this number is 10.

It scans through the sorted dataset sequentially.

Suppose that record Rj is the record currently being

considered. It first tests whether Rj is already known

to be a member in priority queue. If Rj contains in

priority queue, we continue with the next record,

Rj+1.

On the other hand, Rj is not contain in priority

queue, it uses the smith-waterman algorithm to

compare Rj with records in the priority queue. It

iterates through each record in priority queue,

starting with the highest priority record. If similarity

values are greater than a certain threshold, then store

these record pairs in duplicate table. If no match

found, Rj is compared with the next record in priority

queue.

Finally, if Rj is compared to records in priority

queue without detecting that it is a duplicate of any

of these, Rj is saved in the priority queue with

highest priority. If this action causes the size of the

priority queue to exceed its limit then the lowest

priority record is removed from the priority queue.

Then, we scan the next record Rj+1 in database until

scanning all records in database and process the

above steps again and again.

Instead of comparing every record with every

other record, we place a set of records that is

suspected to contain duplicates in priority queue.

Then it compares every record with records in

priority queue. This doing reduces the number of

record comparisons and more speed in running time.

The time complexity of this algorithm for scanning

all records in database is O (WT) where W is the

priority queue size and T is the total number of

records in database. Figure 4 shows the priority

queue algorithm for scanning the bibliographical

dataset.

Input: Sorted Bibliography Dataset

 with Created Keys

Output: Possible Duplicate Record

 with Similarity Values

Begin

1. Read through sorted dataset sequentially

2. while (Sorted dataset hasNext())

Begin

 3. Retrieve one record (Rj) from sorted dataset

 4. Test record (Rj) contains in Priority Queue

 5. If (Rj not contains in Priority Queue)

 Begin

 6. for (all records in Priority Queue)

 Begin

 7. Compute similarity values between Rj

 and other records in Priority Queue

 using Smith-Waterman algorithm

 8. If (Similarity-Value >= Threshold-Value)

 Store the record pairs in duplicate table

 with their similarity scores

 End

 9. If no match found

 Begin

 10. if (PriorityQueue.Size() >10)

 Begin

 11. Remove record with lowest priority

 in Priority Queue

 12. Push Rj into Priority Queue

 End

 13. Else Push Rj into Priority Queue

 End

 End

 14. Else Rj contains in Priority Queue

 Read next record Rj+1

 End

End

Figure 4. Priority Queue Algorithm

3.2.3.2. Matching Criteria

Bibliographical records from DBLP are

compared across a set of five matching criteria and

we refer to them as the similarity of corresponding

fields. Most of the data fields in a bibliographical

record are the free-text strings. We denote the

4

similarity functions for each field by using Smith-

Waterman algorithm respectively as shown in the

following.

1. Smith-Waterman(Key) =String edit distance of

Cr_key field using Smith-Waterman algorithm

2. Smith-Waterman(Author) =String edit distance

of author-name field using Smith-Waterman

algorithm

3. Smith-Waterman(Title) =String edit distance of

Title field using Smith-Waterman algorithm

4. Smith-Waterman(Proceeding) =String edit

distance of Proceeding field using Smith-

Waterman algorithm

5. Boolean (Year) =Boolean matching as

similarity function (1 or 0) of year field

3.2.3.3. Smith-Waterman Algorithm

To measure the similarity value between records

we use Smith-Waterman algorithm in this system.

Given two strings of characters, it uses dynamic

programming to find the lowest cost series of

changes that converts one string into the other, i.e.

the minimum “edit distance” weighted by cost

between the strings [8]. Costs for individual changes,

which are mutations, insertion, or deletions, are

parameters of the algorithm.

Much of the power of the Smith-Waterman

algorithm is due to its ability to introduce gaps in the

records. A gap is a sequence of non-matching

symbols; these are seen as dashes. It works by

computing a score matrix H. One of the strings is

placed along the horizontal axis of the matrix, while

the second string goes along the vertical axis. An

entry H (i,j) in this matrix is the best possible

matching score between the prefix 1……i of the

second string. When the prefixes (or the entire

strings) match exactly, then the optimal alignment

can be found along the main diagonal. For

approximate matches, the optimal alignment is

within a small distance of the diagonal. A matrix H is

built as follows:

H (i, 0) =0, 0≤i≤m

H (0, j) =0, 0≤j≤n

Where:

 a, b = Strings over the Alphabet ∑

 m = length(a)

 n = length(b)

 H(i, j) – is the maximum Similarity-

Score between a suffix of a[1…i] and a

suffix of b[1…j]

 w(c, d) , c, d Є ∑ {„-„}, „-„ is the gap

scoring scheme

Sequence 1=ACACACTA

Sequence 2=AGCACACA

Table 3. Example of Match Scores Matrix

Produced by Smith Waterman Algorithm

To obtain the optimum local alignment, we start

with the highest value in the matrix (i, j). Then, we

go to the biggest value among those in position (i-1,

j), (i, j-1), and (i-1, j-1). We keep the process until

we reach a matrix cell with zero value, or the value

in position (0, 0). Once we‟ve finished, starting with

the last value, we reach (i, j) using the previously-

calculated path. A diagonal jump implies there is an

alignment (either a match or a mismatch). A top-

down jump implies there is a deletion. A left-right

jump implies there is an insertion.

For Table 3, we get:

Sequence 1=A-CACACTA

Sequence 2=AGCACAC-A

All experiments in this system use the Smith-

Waterman algorithm with exact match scores +2 and

no match score -1.The final score calculated by the

algorithm is normalized to range between 0.0 and 1.0

by dividing by 2 times the length of the smaller of

the two records being compared. Example of

similarity values using Smith-Waterman algorithm is

shown in Table 4.

Table 4. Example results for Similarity Values

ID1 ID2 key author title
Proceed

-ing
year

2 3 1.00 0.88 0.75 0.70 1

2 73 0.42 0.65 0.50 0.30 0

5 54 0.65 0.70 0.65 0.76 1

56 123 1.00 0.89 0.80 0.76 0

 - A C A C A C T A

- 0 0 0 0 0 0 0 0 0

A 0 2 1 2 1 2 1 0 2

G 0 1 1 1 1 1 1 0 1

C 0 0 3 2 3 2 3 2 1

A 0 2 2 5 4 5 4 3 4

C 0 1 4 4 7 6 7 6 5

A 0 2 3 6 6 9 8 7 8

C 0 1 4 5 8 8 11 10 9

A 0 2 3 6 6 10 10 10 12

5

The time complexity of this algorithm for

comparing two sequences is O (mn), where m and n

are the lengths of the two sequences being compared.

3.3. Duplicate Elimination

During the elimination process, only one record

of duplicates is retained and eliminated other

duplicate records [1, 3]. The elimination process is

very important to produce a clean data.

Figure 5. Duplicate elimination process

It can be consider a two-step process as

illustrated in Figure 5. Entity identification step is

discussed in Section 3.2. The elimination step use the

duplicate record pairs identify during duplicate

detection as an input. Then, all duplicate records are

grouped in arraylist. Then only one record is retained

and others are deleted.

4. System Implementation

In our proposed system, we use bibliographical

XML dataset from DBLP database which contains

860 records. Firstly, we perform parsing and

standardizing bibliography XML dataset for

preprocessing phase. In duplicate detection phase,

key creation process must be performed by

extracting relevant or portions of author names and

year fields.

 Next, the preprocessed records are sorted

according to keys that get from key creation process.

These sorted dataset are input to priority queue

algorithm. Then, we compute similarity value using

smith-waterman algorithm. Figure 6 shows the result

of similarity values using smith-waterman algorithm.

Figure 7 shows the result after duplicate detection.

Then, only one record with maximum year is

retained and other duplicate records are deleted.

Figure 6. Result of Similarity Values using Smith-

Waterman Algorithm

Figure 7. Result of Duplicate Detection

5. Performance Evaluation

The performance evaluation shown in Figure 8

is evaluated according to the following percentages:

(1) Recall

(2) False Positive Error

(3) False Negative Error

(4) Precision

(1) Recall

It is identified as the percentage of duplicate

records being correctly identified by the system.

(2) False Positive Error

This is the percentage of records wrongly

identified as duplicates.

6

(3) False Negative Error

It is the percentage of duplicate records that are

not detected by system.

(4) Precision

It is the percentage of the information reported

as relevant by system that is correct.

The higher the percentage of precision and

recall, the better the result can get. Also, the less in

the percentage of FP and FN, the better the result can

get.

Figure 8. Performance Result

In this system, the threshold value 0.5, 0.6 and

0.7 are the best result for duplicate detection because

there are less in the percentage of FP and FN and

high percentage of precision and recall. Figure 8

shows the performance evaluation of duplicate

detection.

6. Conclusion

Our proposed framework is designed to clean

duplicate data for improving data quality. This work

focuses on the identifying the duplicate records in

bibliographical XML dataset from DBLP repository

using priority queue algorithm and eliminating them

to produce clean data. The experiments resulted in

high duplicate detection accuracy while significantly

performing many fewer record comparisons.

Smith-Waterman algorithm is implemented to

measure the similarity value. The main purpose of

the algorithm is to determine similar values between

two records and to optimize the similarity measure. It

is performing local sequence alignment and so it

compares segments of all possible lengths rather than

looking at the total sequence. So it is higher

similarity measure than other edit distance

algorithms.

Time is critical in data cleaning large database.

In this system, efficient priority queue method for

detection is used to reduce the time taken on each

comparison. Efficient duplicate detection and

elimination approach is developed to obtain good

result of duplicate detection and elimination by

reducing false positives. Performance evaluation

shows that there was significant time saving and

improved duplicate results. The system is mainly

developed to increase the speed of the duplicate data

detection and elimination process and to increase the

quality of the data by identifying true duplicates and

strict enough to keep out false-positive.

7. References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti,

Eliminating Fuzzy Duplicates in Data Warehouses. VLDB,

pages 586-597, 2002.

[2] C. Batini, M. Lenzerini, and S. Navathe. A comparative

analysis of methodologies for database schema

integration.ACM Computing Surveys, 18(4):323-

364(1986).

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.

Duplicate Record Detection: A Survey, IEEE TKDE,

19(1):1-16, 2007.

[4] I. P. Fellegi and A. B. Sunter. A theory for record

linkage. Journal of the American Statistical Association,

64:1183-1210(1969).

[5] M. Hernandez and S. Stolfo. The merge/purge problem

for large databases. In Proceeding of the ACM SIGMOD

International Conference on Management of Data, pp.

127-138(1995).

[6] W. Kim, I. Choi, S. Gala, and M. Scheevel. On

resolving schematic heterogeneity in multidatabase

systems. Distributed and Paralle Database, 1(3): 251-

279(1993).

[7] Larry P. English, J.: Column “Plain English on Data

Quantity”, DM Review: http://www.dmreview.com, last

accessed 02/10/99.

[8] T. F. Smith and M. S. Waterman. Identification of

common molecular subsequences. Journal of Molecular

Biology, 147:195-197(1981).

[9] Htike. Thin Thin, “An Association Rule Based

Approach to Duplicate Detection in Bibliographical

Records.” In Proceedings of the 3rd International

Conference on Computer Application (ICCNA), 2005.

7

